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•NOT a talk about asset streaming or to-disk serialisation 

•NOT a deep dive on engine functionality

!
“Why isn’t my quest 

location showing up?”

"
“Why isn’t the navmesh 
generating in builds?” Don’t worry, there will be a link 

to the slides provided!
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A Tool For OFPA Actor Lookup
def find_external_actor(search_file, log_file): 
 def get_map_filename(f): 
  search_file_components = f.split("/") 
  map_file = search_file_components[search_file_components.index("__ExternalActors__")+1:len(search_file_components)-3] 
  return "/Game/{}.umap".format("/".join(map_file)) 
 map_file_path = get_map_filename(search_file) 
 unreal.log_warning("Deduced external actor from map: {}".format(map_file_path)) 
 unreal.EditorLoadingAndSavingUtils.load_map(map_file_path) 
  
 def get_external_actor_map(): 
  ed_actor_subsys = unreal.get_editor_subsystem(unreal.EditorActorSubsystem) 
  actors = ed_actor_subsys.get_all_level_actors() 
  return {str(unreal.AssetRegistryHelpers.create_asset_data(a).package_name): a for a in actors} 
 external_actor_map = get_external_actor_map() 
  
 f = open(log_file, "w") 
 for k, v in external_actor_map.items(): 
  package_path = unreal.AssetRegistryHelpers.create_asset_data(v).package_name 
  unreal.log_warning(package_path) 
  path = pathlib.Path(str(package_path).replace("/Game", unreal.Paths.project_content_dir()) + ".uasset") 
  last_modified = datetime.datetime.fromtimestamp(path.stat().st_mtime) 
  f.write("{}: {} - {} modified at {}\n".format(k, v.get_actor_label(), v.get_full_name(), last_modified)) 
 f.close() 
  
 found_actor = external_actor_map[search_file.replace("Content", "/Game").replace(".uasset", "")] 
 unreal.log_warning("FOUND EXTERNAL ACTOR: {} - {}".format(found_actor.get_actor_label(), found_actor.get_full_name())) 
  
find_external_actor(sys.argv[1]) 
 "C:\PathToUnreal\UnrealEditor-Cmd.exe" "C:\PathToProject\Project.uproject" -stdout -FullStdOutLogOutput -run=pythonscript 
                                                               -script=“C:\PathToScript\ofpa_find.py Content/__ExternalActors__/Levels/Main/L_Main/7/3N/J2FSD2Q4GFYXLPL134D4HJ.uasset”
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Unreal 
Forums 
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Available  
Here

https://dev.epicgames.com/community/snippets/bRRr/
unreal-engine-find-ofpa-external-actor-by-filepath

https://dev.epicgames.com/community/snippets/bRRr/unreal-engine-find-ofpa-external-actor-by-filepath
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Grids
• Open worlds typically divvy up the world into 

“chunks” that can be streamed in and out as the 
player navigates the game world 

• A world partitioned map may contain one or 
more grids, which each contain automatically 
portioned cells across which content is divided 

• Thought should be put into the initial 
configuration which should account for: 

• Content density 
• Available memory 
• World layout 
• Player movement speed 

• Avoid micro-management

“World Partition is an automatic data management and distance-
based level streaming system … storing your world in a single 

persistent level separated into grid cells” - Epic’s World Building 
Guide
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Runtime Grid Streaming Rules
• Streaming levels are brought up for consideration 

when their requirements are met 

• Streaming states can be one of: 
                              Unloaded, Loaded, or Activated 

• BeginPlay will be fired as soon as they are 
streamed into the world 

• EndPlay will be fired as they are streamed out (with 
the reason of RemovedFromWorld)
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Dehydrating Actors For Streaming

• Actor descriptors are used to represent 
actors within the World Partition system 

• They are managed as: 
FWorldPartitionActorDescriptor and 
FWorldPartitionActorDescriptorInstance 

• Effectively handled separately from the 
actors that are managed by the world itself 

• They retain a relatively limited set of 
instance information

right up there with other programmer phrases like “ensure all children are orphaned before destroying world”



Grids & Actor Streaming Configuration
• World Settings: 

• Runtime Hash Class 
• Runtime Partitions: 

• Cell size, origin, priority, loading range, slow streaming block, etc. 
• Top partition is considered default grid 

• Actor Settings: 
• Runtime grid property (WHY IS IT FREE TEXT?? map check helps) 
• IsSpatiallyLoaded (hard to keep track of, can create ref chain) 

• Use grid previews and 
block on slow streaming 
to debug setup



Streaming Sources
• Streaming sources define the range of grid cells to 

consider at runtime for streaming 

• Streaming sources must register to the World 
Partition subsystem as a streaming source provider 

• Sources can override default grid loading ranges 
and define streaming source shapes for more 
complex behaviour management 

• Can be setup to target different grids and states 

• Having multiple streaming sources can be 
useful when preloading areas of the world such as: 

• Warming up an impending teleport 
• Faraway sequence cuts

Player01
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Configuring Streaming Sources

• APlayerController registers itself as a 
streaming source by default using the player 
camera manager’s view target actor’s “eyes” 

• UWorldPartitionStreamingSourceComponent 
provides its owning actor’s location/rotation
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Tips For Working With Grids
• Make use of the inbuilt 2D/3D visualisation for debugging 
• Use “block on slow streaming” to pinpoint streaming problems 
• Sub-World Partitions can be used for complex world setups 
• World Partition Editor & Bookmarks help with editing 
• Foliage & landscape auto-partition with streaming proxies 
• Actors will not persist data on streaming out completely 
• Actors are streamed in and out with their original cell 
• Keep actor bounds to a minimum
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Data Layers
• “Layer” is a misnomer; it’s actually a filter to 

assign runtime streaming state 

• Actors may be assigned to zero or more 
data layers 

• Filtering conditions by default form an OR 
operation on the highest streaming state 

• Actors without are not additionally filtered

Actor01
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Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of 

streaming generation rules
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Configuring Data Layers
• World Partition levels automatically spawn AWorldDataLayers actor 

• This owns all data layer configurations for the persistent level 
• Data Layers are actually configured via the Data Layer Outliner 

• Tip: enable bUseExternalPackageData to reduce checkout contention 
• Data Layer Assets can be set to runtime or editor 
• Data Layer Instances be placed in a hierarchy, where 

relationships reduce to an effective “min” streaming state 
• Can be reconfigured from OR to AND 
• External layers for game feature plugins



Hierarchical Level of Detail (HLODs)
• Tool to generate “proxy meshes” that can be swapped out at different LOD levels 
• Can load in HLODs as distant grid cells are streamed out, providing lower cost distant geometry 

• Supports instanced, merged, 
simplified, and approximated 
static mesh transformations
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Level Instances
• Provide Unreal with its own version of a “prefab” 
• Essentially functions as a sub-level 
• Changes are propagated across 

all instances 
• Editing can be done in-situ 
• Unpacked at at PIE/Cook time

• Data layers can be assigned to level 
instances but will be inherited 
by all owned actors 

• Instances can be nested 
• Cannot reference actors from 

outside the level instance without 
EditorPaths 

• Try to organise world content 
vertically
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Packed Level Actors
• Discards all components that are not static meshes 
• Automatically generates instanced static meshes 
• Generates two files 
• Avoid editing in the BP 
• Be careful moving files around 
• Bounds affect streaming
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• These are great for large groups 
of smaller geometry pieces that 
may be repeated 

• Try use instead of level instances 
whenever possible
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Runtime Cell Transformers

• Load and apply arbitrary 
transformations for actors on a 
cell-by-cell basis 

• Only occurs during streaming 
generation, not saved 

• While for build this is done for 
all cells on all grids at cook 
time, it is done on-the-fly 
during PIE sessions as grid 
cells stream in “Runtime Cell Transformers are non-destructive stackable data 

transformation processes that are applied during the streaming 
generation phase when cooking  and launching into PIE.” - Epic’s 

World Building Guide



World Partition Builders
• Arbitrary jobs that can be run incrementally 

across a World Partition level by cell 
• Epic provides a number of these exposed by 

default under the “Build” menu 
• Allows for definition and registration of 

custom builder commandlets
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across a World Partition level by cell 
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default under the “Build” menu 
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Smart Objects
• Provide tools for agents to interact with 

“slots” via a reservation system 

• Actors with USmartObjectComponents can 
be configured with definitions that can hold 
arbitrary data, or even take control interacting 
agent behaviour on each slot 

• When searching via the subsystem, a limited 
subset of slot data for currently unloaded 
Smart Objects can still be retrieved 

• Slots held in spatially-partitioned container: 
• Spatial Hash Grid 
• Octree



Streaming Systems
For Game State Management



A Typical Open World
• Non-linear progression 
• Main quest-line with lasting world effects 
• Side quests with player ability to drop-in/drop-out 
• Interactive map with point of interest markers 
• Party system for companion NPCs 
• Scheduled world changes 
• Time-of-day mechanics



Evaluating Gameplay Requirements
• Assess which systems of World Partition can be leveraged to build out 

gameplay features with respect to the needs of your game 
• Keep in mind possible dependencies and combinatorics involved with both 

runtime management and markup

Potential Data Layer Feature Compatibility Matrix

Common Scheduling Quests Locality Interiors Quality Lighting

Common — — — — — —
Scheduling ✔ ✘ ✘ ✘ ✔

Quests ✘ ✘ ✘ ✔
Locality ✔ ✘ ✔
Interiors ✘ ✔
Quality ✔
Lighting
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Grids As Interiors, Exteriors, & Performance Settings
• Grids used for handling interior/exterior streaming 

• UWorldPartitionMultiStreamingSourceComponent was 
added to support multiple source shapes across presets 

• Many interior grids is ok 
for level streaming 

• Fully unloading exterior is  
not recommended unless 
applied to large interiors



Data Layers As Schedules, Quests, & World States
• OR behaviour makes these concepts reasonably compatible 
• Data Layers make for a powerful tool in manipulating scheduling 

• FDataLayerGroup provides hierarchical specification of inherited groups 
• Multiple schedule groups can be enabled simultaneously



World Partition Spawners
• The limitations of Data Layers can be supplemented by 

AWorldPartitionSpawner, to finely control spawn and config 
• Data Layers used to mask higher order requirements 

• Manage detaching and reattaching for ownership changes 
• Can also be configured via temporary editor actor with hooks 

to serialise to proxy archive, stored as binary
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Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world 

state with managed preloading 

• Schedule can be modified with activation policies of: 
• Standard: Replace the current active schedule, keep additives  
• Additive: Add the schedule into the current additive overlay 
• Solo: Replace the current active schedule, ignore additives 

• Temporary additives can be overlayed during solos for finer 
controls - will be discarded on policy change 

• Persistent schedules allow world state to affect all policies 

• Can be linked to the lighting and environment systems to force 
certain properties such as time-of-day and weather conditions

Current Active Schedule
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Current Additive Schedules

Temporary Additive Schedules

Active Schedule Policy: StandardActive Schedule Policy: Solo
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Custom Markup & Tooling Workflows
• Runtime Streaming Grid Actor Colouration 

• Character Appointment Spawners 

• Lighting previews alongside schedule in-editor 

• Schedule preview & management controls
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Level Streaming Watch
• The ULevelStreamingWatch object allows owners to easily bind to and query 

world streaming state for either the whole world or just for a specific source 
• Helps handle slow streaming and provides feedback for dependent features 

• Used across several systems to manage streaming-aware functionality: 
• World startup and configuration 
• Teleportation warm-up and execution 
• Interior/exterior transitions 
• Managing airlocks between scripted level segments



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Actor09
Actor06

Actor07

Actor08

Actor10

DL01
DL01

DL01
DL01

DL01



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Actor09
Actor06

Actor07

Actor08

Actor10

DL01
DL01

DL01
DL01

DL01

Marker Cache



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Actor09
Actor06

Actor07

Actor08

Actor10

DL01
DL01

DL01
DL01

DL01

Marker Cache



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info 
• Pull runtime grid info on marker data 
• Create virtual mapping of spaces 
• Add marker “portals” as delegates



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info 
• Pull runtime grid info on marker data 
• Create virtual mapping of spaces 
• Add marker “portals” as delegates

Marker01

Grid02

Marker02

Grid03



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info 
• Pull runtime grid info on marker data 
• Create virtual mapping of spaces 
• Add marker “portals” as delegates

Marker01

Grid02

Marker02

Grid03

Grid01

Grid02Grid03



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info 
• Pull runtime grid info on marker data 
• Create virtual mapping of spaces 
• Add marker “portals” as delegates

Marker01

Grid02

Marker02

Grid03
Grid01 
Grid02

Grid01 
Grid03

Grid01

Grid02Grid03



A Marker System
• Keep all marker actors persistently loaded 

• Easy to understand, incredibly wasteful 

• Cache markers on world startup with Data Layers 
• Easy in PIE, painful and fiddly to manage 

• Cache markers on cook for offline lookup, track live 
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info 
• Pull runtime grid info on marker data 
• Create virtual mapping of spaces 
• Add marker “portals” as delegates

Marker01

Grid02

Marker02

Grid03
Grid01 
Grid02

Grid01 
Grid03

Grid01

Grid02Grid03



Serialisation Systems
For Game State Persistence



Condensing World & Streaming State Representation
• Author systems to operate on discreet states 

• Design actors to support reload scenarios 

• Reduce states into tractable, configurable IDs 
• Avoid tying state data directly to assets 

• Some state will be specific to actors in the world 
• Tag to save space and facilitate reset capabilities 

• Allow save game data to be manually modified 
• Optional text-based serialisation can be useful 

for debugging and desk-checking game states 
• This functionality can work very well as a debug 

tool when allowing for state capture



Capturing Live State & Save Game Concerns
• Actors configure themselves on inference from world state 

• Avoids abusing Data Layers for minor details 

• Taking in game state as a snapshot at any point is a relatively 
safe path assuming all critical triggers and state are serialised 

• Ensure save points and state change process is clear and 
controlled 

• Ensure live capture cannot generate invalid game state 
• Reduce valid states where possible 

• Managing world state conflicts is hard to do in an automated 
way, so good documentation on the effects of all quests over 
time is valuable



Intermediate State Caching
• Actors being streamed in and out need a way to restore critical state 

• It may also be important, depending on your game to be able to modify object states while unloaded 

• The USerialisableActorStateComponent provides a simplified way defining these states 
• Leverages SerializeScriptProperties with SaveGame - can be serialised out to an archive or variant 

• Actors should be written to configure on changes coming from cache 
• Unloaded lookup can be done based on the actor’s SoftObjectPointer 
• Special handling is needed for WorldPartitionSpawners 
• Can be handled in batch

Serialisable Actor Cache

Actor02
Serialisable

Actor01
Serialisable



Level Streaming Persistence Plugin
• Yup, Epic has a plugin for that… 

• “Level Streaming Persistence” plugin is still experimental as of 
Unreal 5.6 

• All persistent actor properties must be marked up in a config file 
with their full path 

• Can be brittle to path changes and renames 
• Does not handle replacement of actor destroyed state 

• Provides ability to remotely modify properties marked “public”



Wrap-up, Summary
And Q&A



Summing it all up

• World Partition is a very deep bag of tools enabling parallel 
workflow, level streaming, and actor/geometry optimisation 

• Be aware of the tooling and dimensionality you have available, 
and intentionally plan out its usage ahead of time 

• Managing open world state can become quite complex - it’s 
valuable to build in assumptions, and limit possibility space 

• Approach all systems and features with a plan for persistence 
early and evaluate impact of streaming on all functionality



Q&A



@jonjondev.comjonjondevjonjondev.com

Thanks for watching!
Slides 

Available 
Here 

For 
Download

JonJonDev.com/documents/GCAP25StreamingAndSerialisation.pdf

http://JonJonDev.com/documents/GCAP25StreamingAndSerialisation.pdf

