

Streaming & Serialisation
For Unreal Open Worlds

Who am I?

Who am I?

Pipeline Engineer

Who am I?

Indie Developer

Pipeline Engineer

Who am I?

Indie Developer

Gameplay Engineer

Pipeline Engineer

Who am I?

Indie Developer

Gameplay Engineer
?

Pipeline Engineer

Why this talk?
• I didn’t know anything about how to make open worlds

Why this talk?
• I didn’t know anything about how to make open worlds
• Unreal’s World Partition was exactly the solution we needed
• So much incredible functionality for free
• Very little documentation on its features
• NOT an “all in one” solution

Why this talk?
• I didn’t know anything about how to make open worlds

• People were wrong on the internet

• Unreal’s World Partition was exactly the solution we needed
• So much incredible functionality for free
• Very little documentation on its features
• NOT an “all in one” solution

What isn’t this talk?

•NOT a tutorial on “how to get started”

•NOT a step-by-step guide with code-snippets

•NOT a talk about asset streaming or to-disk serialisation

•NOT a deep dive on engine functionality

What isn’t this talk?

•NOT a tutorial on “how to get started”

•NOT a step-by-step guide with code-snippets

•NOT a talk about asset streaming or to-disk serialisation

•NOT a deep dive on engine functionality

!
“Why isn’t my quest

location showing up?”

What isn’t this talk?

•NOT a tutorial on “how to get started”

•NOT a step-by-step guide with code-snippets

•NOT a talk about asset streaming or to-disk serialisation

•NOT a deep dive on engine functionality

!
“Why isn’t my quest

location showing up?”

"
“Why isn’t the navmesh
generating in builds?”

What isn’t this talk?

•NOT a tutorial on “how to get started”

•NOT a step-by-step guide with code-snippets

•NOT a talk about asset streaming or to-disk serialisation

•NOT a deep dive on engine functionality

!
“Why isn’t my quest

location showing up?”

"
“Why isn’t the navmesh
generating in builds?” Don’t worry, there will be a link

to the slides provided!

What to expect over the next 50 minutes
What are Unreal’s

World Partition systems?
Streaming systems for

game state management

Serialisation systems for
game state persistence

Wrap-up, summary
and Q&A

What to expect over the next 50 minutes
What are Unreal’s

World Partition systems?
Streaming systems for

game state management

Serialisation systems for
game state persistence

Wrap-up, summary
and Q&A

OFPA
HLODs Level Instances

Packed Level Actors Data Layers

Grids

Smart Objects

What to expect over the next 50 minutes
What are Unreal’s

World Partition systems?
Streaming systems for

game state management

Serialisation systems for
game state persistence

Wrap-up, summary
and Q&A

Interior/Exterior SpacesSchedules & Quests

Lighting & Environment ChangesMarkers

OFPA
HLODs Level Instances

Packed Level Actors Data Layers

Grids

Smart Objects

What to expect over the next 50 minutes
What are Unreal’s

World Partition systems?
Streaming systems for

game state management

Serialisation systems for
game state persistence

Wrap-up, summary
and Q&A

World State Representation

Live Data Capture
Handling Actors

Checkpointing

Interior/Exterior SpacesSchedules & Quests

Lighting & Environment ChangesMarkers

OFPA
HLODs Level Instances

Packed Level Actors Data Layers

Grids

Smart Objects

What to expect over the next 50 minutes
What are Unreal’s

World Partition systems?
Streaming systems for

game state management

Serialisation systems for
game state persistence

Wrap-up, summary
and Q&A

World State Representation

Live Data Capture
Handling Actors

Checkpointing

Interior/Exterior SpacesSchedules & Quests

Lighting & Environment ChangesMarkers

Concluding Thoughts
Other people talk for a bit

OFPA
HLODs Level Instances

Packed Level Actors Data Layers

Grids

Smart Objects

What Are Unreal’s
World Partition Systems?

One File Per-Actor (OFPA)
• World Partition’s multi-user editing solution
• Enabled by default for World Partition levels
• Inverts the relationship between maps and actors
• Maps typically contain:

• Settings
• Metadata
• Actors

One File Per-Actor (OFPA)
• World Partition’s multi-user editing solution
• Enabled by default for World Partition levels
• Inverts the relationship between maps and actors
• Maps typically contain:

• Settings
• Metadata
• Actors

Map

Actor01 Actor02

One File Per-Actor (OFPA)
• World Partition’s multi-user editing solution
• Enabled by default for World Partition levels
• Inverts the relationship between maps and actors
• Maps typically contain:

• Settings
• Metadata
• Actors

Map

Actor01 Actor02

Map

Map

Actor01 Actor02

Map

Actor03 Actor04

One File Per-Actor (OFPA)
• World Partition’s multi-user editing solution
• Enabled by default for World Partition levels
• Inverts the relationship between maps and actors
• Maps typically contain:

• Settings
• Metadata
• Actors

Map

Actor01 Actor02

Map

Actor01 Actor02

Map

Map

Actor01 Actor02

Map

Actor03 Actor04

Anatomy Of An External Actor File

Anatomy Of An External Actor File

Map
/Game/Content/Levels/Main/L_Main.uasset

Anatomy Of An External Actor File

Map
/Game/Content/Levels/Main/L_Main.uasset

/Game/Content/__ExternalActors__/Levels/Main/L_Main/0/0C/ZNNHNWCBB9FG9K4BCQBQ4G.uasset

Actor

Anatomy Of An External Actor File

Map
/Game/Content/Levels/Main/L_Main.uasset

/Game/Content/__ExternalObjects__/Levels/Main/L_Main/F/04/6U6DBM0R72CE8RPNB95JTO.uasset

Object

/Game/Content/__ExternalActors__/Levels/Main/L_Main/0/0C/ZNNHNWCBB9FG9K4BCQBQ4G.uasset

Actor

Anatomy Of An External Actor File

Map
/Game/Content/Levels/Main/L_Main.uasset

/Game/Content/__ExternalActors__/Levels/Main/L_Main/0/0C/ZNNHNWCBB9FG9K4BCQBQ4G.uasset

Actor

Anatomy Of An External Actor File

Map
/Game/Content/Levels/Main/L_Main.uasset

External Actor
Directory

/Game/Content/__ExternalActors__/Levels/Main/L_Main/0/0C/ZNNHNWCBB9FG9K4BCQBQ4G.uasset

Actor

Anatomy Of An External Actor File

Map
/Game/Content/Levels/Main/L_Main.uasset

External Actor
Directory

Owning
Level Path

/Game/Content/__ExternalActors__/Levels/Main/L_Main/0/0C/ZNNHNWCBB9FG9K4BCQBQ4G.uasset

Actor

Anatomy Of An External Actor File

Map
/Game/Content/Levels/Main/L_Main.uasset

External Actor
Directory

Owning
Level Path

Hashed Actor
File Path

/Game/Content/__ExternalActors__/Levels/Main/L_Main/0/0C/ZNNHNWCBB9FG9K4BCQBQ4G.uasset

Actor

Managing External Actors
• Keeping your comfortable p4

or Git workflow can be painful
• Seems worse than it is though

Managing External Actors
• Keeping your comfortable p4

or Git workflow can be painful
• Seems worse than it is though

Managing External Actors
• Keeping your comfortable p4

or Git workflow can be painful
• Seems worse than it is though

Managing External Actors
• Keeping your comfortable p4

or Git workflow can be painful
• Seems worse than it is though

Workflow Considerations When Working With OFPA

Workflow Considerations When Working With OFPA

Reduced Checkout
Collisions

Workflow Considerations When Working With OFPA

Reduced Checkout
Collisions

More Complicated
Checkout Collisions

Workflow Considerations When Working With OFPA

Reduced Checkout
Collisions

More Complicated
Checkout Collisions

More Granular
Checkins

Workflow Considerations When Working With OFPA

Reduced Checkout
Collisions

More Complicated
Checkout Collisions

More Granular
Checkins

Nonsense Changelist
Contents

Workflow Considerations When Working With OFPA

Reduced Checkout
Collisions

More Complicated
Checkout Collisions

More Granular
Checkins

Nonsense Changelist
Contents

Great In-Editor
VCS Support

Workflow Considerations When Working With OFPA

Reduced Checkout
Collisions

More Complicated
Checkout Collisions

More Granular
Checkins

Nonsense Changelist
Contents

Great In-Editor
VCS Support

Required In-Editor
Workflows

A Tool For OFPA Actor Lookup
def find_external_actor(search_file, log_file):
 def get_map_filename(f):
 search_file_components = f.split("/")
 map_file = search_file_components[search_file_components.index("__ExternalActors__")+1:len(search_file_components)-3]
 return "/Game/{}.umap".format("/".join(map_file))
 map_file_path = get_map_filename(search_file)
 unreal.log_warning("Deduced external actor from map: {}".format(map_file_path))
 unreal.EditorLoadingAndSavingUtils.load_map(map_file_path)

 def get_external_actor_map():
 ed_actor_subsys = unreal.get_editor_subsystem(unreal.EditorActorSubsystem)
 actors = ed_actor_subsys.get_all_level_actors()
 return {str(unreal.AssetRegistryHelpers.create_asset_data(a).package_name): a for a in actors}
 external_actor_map = get_external_actor_map()

 f = open(log_file, "w")
 for k, v in external_actor_map.items():
 package_path = unreal.AssetRegistryHelpers.create_asset_data(v).package_name
 unreal.log_warning(package_path)
 path = pathlib.Path(str(package_path).replace("/Game", unreal.Paths.project_content_dir()) + ".uasset")
 last_modified = datetime.datetime.fromtimestamp(path.stat().st_mtime)
 f.write("{}: {} - {} modified at {}\n".format(k, v.get_actor_label(), v.get_full_name(), last_modified))
 f.close()

 found_actor = external_actor_map[search_file.replace("Content", "/Game").replace(".uasset", "")]
 unreal.log_warning("FOUND EXTERNAL ACTOR: {} - {}".format(found_actor.get_actor_label(), found_actor.get_full_name()))

find_external_actor(sys.argv[1])
 "C:\PathToUnreal\UnrealEditor-Cmd.exe" "C:\PathToProject\Project.uproject" -stdout -FullStdOutLogOutput -run=pythonscript
 -script=“C:\PathToScript\ofpa_find.py Content/__ExternalActors__/Levels/Main/L_Main/7/3N/J2FSD2Q4GFYXLPL134D4HJ.uasset”

A Tool For OFPA Actor Lookup
def find_external_actor(search_file, log_file):
 def get_map_filename(f):
 search_file_components = f.split("/")
 map_file = search_file_components[search_file_components.index("__ExternalActors__")+1:len(search_file_components)-3]
 return "/Game/{}.umap".format("/".join(map_file))
 map_file_path = get_map_filename(search_file)
 unreal.log_warning("Deduced external actor from map: {}".format(map_file_path))
 unreal.EditorLoadingAndSavingUtils.load_map(map_file_path)

 def get_external_actor_map():
 ed_actor_subsys = unreal.get_editor_subsystem(unreal.EditorActorSubsystem)
 actors = ed_actor_subsys.get_all_level_actors()
 return {str(unreal.AssetRegistryHelpers.create_asset_data(a).package_name): a for a in actors}
 external_actor_map = get_external_actor_map()

 f = open(log_file, "w")
 for k, v in external_actor_map.items():
 package_path = unreal.AssetRegistryHelpers.create_asset_data(v).package_name
 unreal.log_warning(package_path)
 path = pathlib.Path(str(package_path).replace("/Game", unreal.Paths.project_content_dir()) + ".uasset")
 last_modified = datetime.datetime.fromtimestamp(path.stat().st_mtime)
 f.write("{}: {} - {} modified at {}\n".format(k, v.get_actor_label(), v.get_full_name(), last_modified))
 f.close()

 found_actor = external_actor_map[search_file.replace("Content", "/Game").replace(".uasset", "")]
 unreal.log_warning("FOUND EXTERNAL ACTOR: {} - {}".format(found_actor.get_actor_label(), found_actor.get_full_name()))

find_external_actor(sys.argv[1])
 "C:\PathToUnreal\UnrealEditor-Cmd.exe" "C:\PathToProject\Project.uproject" -stdout -FullStdOutLogOutput -run=pythonscript
 -script=“C:\PathToScript\ofpa_find.py Content/__ExternalActors__/Levels/Main/L_Main/7/3N/J2FSD2Q4GFYXLPL134D4HJ.uasset”

A Tool For OFPA Actor Lookup
def find_external_actor(search_file, log_file):
 def get_map_filename(f):
 search_file_components = f.split("/")
 map_file = search_file_components[search_file_components.index("__ExternalActors__")+1:len(search_file_components)-3]
 return "/Game/{}.umap".format("/".join(map_file))
 map_file_path = get_map_filename(search_file)
 unreal.log_warning("Deduced external actor from map: {}".format(map_file_path))
 unreal.EditorLoadingAndSavingUtils.load_map(map_file_path)

 def get_external_actor_map():
 ed_actor_subsys = unreal.get_editor_subsystem(unreal.EditorActorSubsystem)
 actors = ed_actor_subsys.get_all_level_actors()
 return {str(unreal.AssetRegistryHelpers.create_asset_data(a).package_name): a for a in actors}
 external_actor_map = get_external_actor_map()

 f = open(log_file, "w")
 for k, v in external_actor_map.items():
 package_path = unreal.AssetRegistryHelpers.create_asset_data(v).package_name
 unreal.log_warning(package_path)
 path = pathlib.Path(str(package_path).replace("/Game", unreal.Paths.project_content_dir()) + ".uasset")
 last_modified = datetime.datetime.fromtimestamp(path.stat().st_mtime)
 f.write("{}: {} - {} modified at {}\n".format(k, v.get_actor_label(), v.get_full_name(), last_modified))
 f.close()

 found_actor = external_actor_map[search_file.replace("Content", "/Game").replace(".uasset", "")]
 unreal.log_warning("FOUND EXTERNAL ACTOR: {} - {}".format(found_actor.get_actor_label(), found_actor.get_full_name()))

find_external_actor(sys.argv[1])
 "C:\PathToUnreal\UnrealEditor-Cmd.exe" "C:\PathToProject\Project.uproject" -stdout -FullStdOutLogOutput -run=pythonscript
 -script=“C:\PathToScript\ofpa_find.py Content/__ExternalActors__/Levels/Main/L_Main/7/3N/J2FSD2Q4GFYXLPL134D4HJ.uasset”

Unreal
Forums
Snippet

Available
Here

https://dev.epicgames.com/community/snippets/bRRr/
unreal-engine-find-ofpa-external-actor-by-filepath

https://dev.epicgames.com/community/snippets/bRRr/unreal-engine-find-ofpa-external-actor-by-filepath
https://dev.epicgames.com/community/snippets/bRRr/unreal-engine-find-ofpa-external-actor-by-filepath

Grids
• Open worlds typically divvy up the world into

“chunks” that can be streamed in and out as the
player navigates the game world

• A world partitioned map may contain one or
more grids, which each contain automatically
portioned cells across which content is divided

• Thought should be put into the initial
configuration which should account for:

• Content density
• Available memory
• World layout
• Player movement speed

• Avoid micro-management

“World Partition is an automatic data management and distance-
based level streaming system … storing your world in a single

persistent level separated into grid cells” - Epic’s World Building
Guide

Grids
• Open worlds typically divvy up the world into

“chunks” that can be streamed in and out as the
player navigates the game world

• A world partitioned map may contain one or
more grids, which each contain automatically
portioned cells across which content is divided

• Thought should be put into the initial
configuration which should account for:

• Content density
• Available memory
• World layout
• Player movement speed

• Avoid micro-management

“World Partition is an automatic data management and distance-
based level streaming system … storing your world in a single

persistent level separated into grid cells” - Epic’s World Building
Guide

Streaming Generation
• Process of building the data structures to assign

actors into logical groups for streaming purposes

• All actors will be assigned to a streaming level
based a number of factors, including the cell of the
runtime grid they fall within

• The resulting work is used to marshal actors to the
“streaming levels” used at runtime

• Occurs during cook in builds and on-the-fly during
PIE sessions

Streaming Generation
• Process of building the data structures to assign

actors into logical groups for streaming purposes

• All actors will be assigned to a streaming level
based a number of factors, including the cell of the
runtime grid they fall within

• The resulting work is used to marshal actors to the
“streaming levels” used at runtime

• Occurs during cook in builds and on-the-fly during
PIE sessions

Actor04 Actor01

Actor02

Actor03

Streaming Generation
• Process of building the data structures to assign

actors into logical groups for streaming purposes

• All actors will be assigned to a streaming level
based a number of factors, including the cell of the
runtime grid they fall within

• The resulting work is used to marshal actors to the
“streaming levels” used at runtime

• Occurs during cook in builds and on-the-fly during
PIE sessions

Actor04 Actor01

Actor02

Actor03

Runtime Grid Streaming Rules
• Streaming levels are brought up for consideration

when their requirements are met

• Streaming states can be one of:
 Unloaded, Loaded, or Activated

• BeginPlay will be fired as soon as they are
streamed into the world

• EndPlay will be fired as they are streamed out (with
the reason of RemovedFromWorld)

Actor04 Actor01

Actor02

Actor03

Runtime Grid Streaming Rules
• Streaming levels are brought up for consideration

when their requirements are met

• Streaming states can be one of:
 Unloaded, Loaded, or Activated

• BeginPlay will be fired as soon as they are
streamed into the world

• EndPlay will be fired as they are streamed out (with
the reason of RemovedFromWorld)

Actor04 Actor01

Actor02

Actor03

Runtime Grid Streaming Rules
• Streaming levels are brought up for consideration

when their requirements are met

• Streaming states can be one of:
 Unloaded, Loaded, or Activated

• BeginPlay will be fired as soon as they are
streamed into the world

• EndPlay will be fired as they are streamed out (with
the reason of RemovedFromWorld)

Actor04 Actor01

Actor02

Actor03

Runtime Grid Streaming Rules
• Streaming levels are brought up for consideration

when their requirements are met

• Streaming states can be one of:
 Unloaded, Loaded, or Activated

• BeginPlay will be fired as soon as they are
streamed into the world

• EndPlay will be fired as they are streamed out (with
the reason of RemovedFromWorld)

Actor04 Actor01

Actor02

Actor03

Dehydrating Actors For Streaming

• Actor descriptors are used to represent
actors within the World Partition system

• They are managed as:
FWorldPartitionActorDescriptor and
FWorldPartitionActorDescriptorInstance

• Effectively handled separately from the
actors that are managed by the world itself

• They retain a relatively limited set of
instance information

right up there with other programmer phrases like “ensure all children are orphaned before destroying world”

Grids & Actor Streaming Configuration
• World Settings:

• Runtime Hash Class
• Runtime Partitions:

• Cell size, origin, priority, loading range, slow streaming block, etc.
• Top partition is considered default grid

• Actor Settings:
• Runtime grid property (WHY IS IT FREE TEXT?? map check helps)
• IsSpatiallyLoaded (hard to keep track of, can create ref chain)

• Use grid previews and
block on slow streaming
to debug setup

Streaming Sources
• Streaming sources define the range of grid cells to

consider at runtime for streaming

• Streaming sources must register to the World
Partition subsystem as a streaming source provider

• Sources can override default grid loading ranges
and define streaming source shapes for more
complex behaviour management

• Can be setup to target different grids and states

• Having multiple streaming sources can be
useful when preloading areas of the world such as:

• Warming up an impending teleport
• Faraway sequence cuts

Player01

Streaming Sources
• Streaming sources define the range of grid cells to

consider at runtime for streaming

• Streaming sources must register to the World
Partition subsystem as a streaming source provider

• Sources can override default grid loading ranges
and define streaming source shapes for more
complex behaviour management

• Can be setup to target different grids and states

• Having multiple streaming sources can be
useful when preloading areas of the world such as:

• Warming up an impending teleport
• Faraway sequence cuts

loading
range

Player01

Streaming Sources
• Streaming sources define the range of grid cells to

consider at runtime for streaming

• Streaming sources must register to the World
Partition subsystem as a streaming source provider

• Sources can override default grid loading ranges
and define streaming source shapes for more
complex behaviour management

• Can be setup to target different grids and states

• Having multiple streaming sources can be
useful when preloading areas of the world such as:

• Warming up an impending teleport
• Faraway sequence cuts

loading
range

Player01

Streaming Sources
• Streaming sources define the range of grid cells to

consider at runtime for streaming

• Streaming sources must register to the World
Partition subsystem as a streaming source provider

• Sources can override default grid loading ranges
and define streaming source shapes for more
complex behaviour management

• Can be setup to target different grids and states

• Having multiple streaming sources can be
useful when preloading areas of the world such as:

• Warming up an impending teleport
• Faraway sequence cuts

loading
range

Player01

Streaming Sources
• Streaming sources define the range of grid cells to

consider at runtime for streaming

• Streaming sources must register to the World
Partition subsystem as a streaming source provider

• Sources can override default grid loading ranges
and define streaming source shapes for more
complex behaviour management

• Can be setup to target different grids and states

• Having multiple streaming sources can be
useful when preloading areas of the world such as:

• Warming up an impending teleport
• Faraway sequence cuts

loading
range

Player01

Streaming Sources
• Streaming sources define the range of grid cells to

consider at runtime for streaming

• Streaming sources must register to the World
Partition subsystem as a streaming source provider

• Sources can override default grid loading ranges
and define streaming source shapes for more
complex behaviour management

• Can be setup to target different grids and states

• Having multiple streaming sources can be
useful when preloading areas of the world such as:

• Warming up an impending teleport
• Faraway sequence cuts

loading
range

Player01

Actor01
(w/source)

Streaming Sources
• Streaming sources define the range of grid cells to

consider at runtime for streaming

• Streaming sources must register to the World
Partition subsystem as a streaming source provider

• Sources can override default grid loading ranges
and define streaming source shapes for more
complex behaviour management

• Can be setup to target different grids and states

• Having multiple streaming sources can be
useful when preloading areas of the world such as:

• Warming up an impending teleport
• Faraway sequence cuts

loading
range

Player01

Actor01
(w/source)

Configuring Streaming Sources

• APlayerController registers itself as a
streaming source by default using the player
camera manager’s view target actor’s “eyes”

• UWorldPartitionStreamingSourceComponent
provides its owning actor’s location/rotation

Configuring Streaming Sources

• APlayerController registers itself as a
streaming source by default using the player
camera manager’s view target actor’s “eyes”

• UWorldPartitionStreamingSourceComponent
provides its owning actor’s location/rotation

Tips For Working With Grids
• Make use of the inbuilt 2D/3D visualisation for debugging
• Use “block on slow streaming” to pinpoint streaming problems
• Sub-World Partitions can be used for complex world setups
• World Partition Editor & Bookmarks help with editing
• Foliage & landscape auto-partition with streaming proxies
• Actors will not persist data on streaming out completely
• Actors are streamed in and out with their original cell
• Keep actor bounds to a minimum

Tips For Working With Grids
• Make use of the inbuilt 2D/3D visualisation for debugging
• Use “block on slow streaming” to pinpoint streaming problems
• Sub-World Partitions can be used for complex world setups
• World Partition Editor & Bookmarks help with editing
• Foliage & landscape auto-partition with streaming proxies
• Actors will not persist data on streaming out completely
• Actors are streamed in and out with their original cell
• Keep actor bounds to a minimum

Data Layers
• “Layer” is a misnomer; it’s actually a filter to

assign runtime streaming state

• Actors may be assigned to zero or more
data layers

• Filtering conditions by default form an OR
operation on the highest streaming state

• Actors without are not additionally filtered

Actor01

Actor02
Actor05

DL01

DL01
DL02

DL01 - Unloaded
DL02 - Unloaded

Data Layers
• “Layer” is a misnomer; it’s actually a filter to

assign runtime streaming state

• Actors may be assigned to zero or more
data layers

• Filtering conditions by default form an OR
operation on the highest streaming state

• Actors without are not additionally filtered

Actor01

Actor02
Actor05

DL01

DL01
DL02

DL01 - ActivatedDL01 - Unloaded
DL02 - Unloaded

Data Layers
• “Layer” is a misnomer; it’s actually a filter to

assign runtime streaming state

• Actors may be assigned to zero or more
data layers

• Filtering conditions by default form an OR
operation on the highest streaming state

• Actors without are not additionally filtered

Actor01

Actor02
Actor05

DL01

DL01
DL02

DL02 - Activated
DL01 - ActivatedDL01 - Unloaded
DL02 - Unloaded

Data Layers
• “Layer” is a misnomer; it’s actually a filter to

assign runtime streaming state

• Actors may be assigned to zero or more
data layers

• Filtering conditions by default form an OR
operation on the highest streaming state

• Actors without are not additionally filtered

Actor01

Actor02
Actor05

DL01

DL01
DL02

DL02 - Activated
DL01 - ActivatedDL01 - Unloaded
DL02 - Unloaded

Data Layers
• “Layer” is a misnomer; it’s actually a filter to

assign runtime streaming state

• Actors may be assigned to zero or more
data layers

• Filtering conditions by default form an OR
operation on the highest streaming state

• Actors without are not additionally filtered

Actor01

Actor02
Actor05

DL01

DL01
DL02

DL02 - Activated
DL01 - ActivatedDL01 - Unloaded
DL02 - Unloaded

Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of

streaming generation rules

Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of

streaming generation rules

Actor04 Actor01

Actor02

Actor03

Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of

streaming generation rules

Actor04 Actor01

Actor02

Actor03

Grid
s

Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of

streaming generation rules

Actor04 Actor01

Actor02

Actor03

 Data
Layers

Grid
s

Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of

streaming generation rules

Actor04
Actor01

Actor02

Actor03

Actor05

Actor04 Actor01

Actor02

Actor03

 Data
Layers

Grid
s

Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of

streaming generation rules

Actor04
Actor01

Actor02

Actor03

Actor05

Actor04 Actor01

Actor02

Actor03

 Data
Layers

Grid
s Grid2

Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of

streaming generation rules

Actor04
Actor01

Actor02

Actor03

Actor05

Actor04 Actor01

Actor02

Actor03

 Data
Layers

Grid
s

DL01

Grid2

Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of

streaming generation rules

Actor04
Actor01

Actor02

Actor03

Actor05

Actor04 Actor01

Actor02

Actor03

 Data
Layers

Grid
s

DL01

Grid2

Data Layers & Streaming Generation
• Data Layers further expand the combinatorics of

streaming generation rules

Actor04
Actor01

Actor02

Actor03

Actor05

Actor04 Actor01

Actor02

Actor03

 Data
Layers

Grid
s

DL01

Grid2

streaming levels = cells * grids * data layers
(for each unique combination used by actors)

Configuring Data Layers
• World Partition levels automatically spawn AWorldDataLayers actor

• This owns all data layer configurations for the persistent level
• Data Layers are actually configured via the Data Layer Outliner

• Tip: enable bUseExternalPackageData to reduce checkout contention
• Data Layer Assets can be set to runtime or editor
• Data Layer Instances be placed in a hierarchy, where

relationships reduce to an effective “min” streaming state
• Can be reconfigured from OR to AND
• External layers for game feature plugins

Hierarchical Level of Detail (HLODs)
• Tool to generate “proxy meshes” that can be swapped out at different LOD levels
• Can load in HLODs as distant grid cells are streamed out, providing lower cost distant geometry

• Supports instanced, merged,
simplified, and approximated
static mesh transformations

Hierarchical Level of Detail (HLODs)
• Tool to generate “proxy meshes” that can be swapped out at different LOD levels
• Can load in HLODs as distant grid cells are streamed out, providing lower cost distant geometry

• Supports instanced, merged,
simplified, and approximated
static mesh transformations

Hierarchical Level of Detail (HLODs)
• Tool to generate “proxy meshes” that can be swapped out at different LOD levels
• Can load in HLODs as distant grid cells are streamed out, providing lower cost distant geometry

• Supports instanced, merged,
simplified, and approximated
static mesh transformations

SM SM

SM SM

Hierarchical Level of Detail (HLODs)
• Tool to generate “proxy meshes” that can be swapped out at different LOD levels
• Can load in HLODs as distant grid cells are streamed out, providing lower cost distant geometry

• Supports instanced, merged,
simplified, and approximated
static mesh transformations

HLOD

SM SM

SM SM

Hierarchical Level of Detail (HLODs)
• Tool to generate “proxy meshes” that can be swapped out at different LOD levels
• Can load in HLODs as distant grid cells are streamed out, providing lower cost distant geometry

• Supports instanced, merged,
simplified, and approximated
static mesh transformations

HLOD

ISM ISM

ISM ISM

Hierarchical Level of Detail (HLODs)
• Tool to generate “proxy meshes” that can be swapped out at different LOD levels
• Can load in HLODs as distant grid cells are streamed out, providing lower cost distant geometry

• Supports instanced, merged,
simplified, and approximated
static mesh transformations

HLOD

SM

Hierarchical Level of Detail (HLODs)
• Tool to generate “proxy meshes” that can be swapped out at different LOD levels
• Can load in HLODs as distant grid cells are streamed out, providing lower cost distant geometry

• Supports instanced, merged,
simplified, and approximated
static mesh transformations

HLOD

SM

Hierarchical Level of Detail (HLODs)
• Tool to generate “proxy meshes” that can be swapped out at different LOD levels
• Can load in HLODs as distant grid cells are streamed out, providing lower cost distant geometry

• Supports instanced, merged,
simplified, and approximated
static mesh transformations

HLOD

SM

Level Instances
• Provide Unreal with its own version of a “prefab”
• Essentially functions as a sub-level
• Changes are propagated across

all instances
• Editing can be done in-situ
• Unpacked at at PIE/Cook time

• Data layers can be assigned to level
instances but will be inherited
by all owned actors

• Instances can be nested
• Cannot reference actors from

outside the level instance without
EditorPaths

• Try to organise world content
vertically

Level Instances
• Provide Unreal with its own version of a “prefab”
• Essentially functions as a sub-level
• Changes are propagated across

all instances
• Editing can be done in-situ
• Unpacked at at PIE/Cook time

• Data layers can be assigned to level
instances but will be inherited
by all owned actors

• Instances can be nested
• Cannot reference actors from

outside the level instance without
EditorPaths

• Try to organise world content
vertically

Level Instances
• Provide Unreal with its own version of a “prefab”
• Essentially functions as a sub-level
• Changes are propagated across

all instances
• Editing can be done in-situ
• Unpacked at at PIE/Cook time

Actor01 Actor02

MapPersistent
Level

• Data layers can be assigned to level
instances but will be inherited
by all owned actors

• Instances can be nested
• Cannot reference actors from

outside the level instance without
EditorPaths

• Try to organise world content
vertically

Level Instances
• Provide Unreal with its own version of a “prefab”
• Essentially functions as a sub-level
• Changes are propagated across

all instances
• Editing can be done in-situ
• Unpacked at at PIE/Cook time

Actor01 Actor02

MapPersistent
Level

• Data layers can be assigned to level
instances but will be inherited
by all owned actors

• Instances can be nested
• Cannot reference actors from

outside the level instance without
EditorPaths

• Try to organise world content
vertically

Level Instances
• Provide Unreal with its own version of a “prefab”
• Essentially functions as a sub-level
• Changes are propagated across

all instances
• Editing can be done in-situ
• Unpacked at at PIE/Cook time

Actor01 Actor02

MapPersistent
Level

• Data layers can be assigned to level
instances but will be inherited
by all owned actors

• Instances can be nested
• Cannot reference actors from

outside the level instance without
EditorPaths

• Try to organise world content
vertically

Level Instances
• Provide Unreal with its own version of a “prefab”
• Essentially functions as a sub-level
• Changes are propagated across

all instances
• Editing can be done in-situ
• Unpacked at at PIE/Cook time

Actor01 Actor02

MapInstanced
Level

MapPersistent
Level

• Data layers can be assigned to level
instances but will be inherited
by all owned actors

• Instances can be nested
• Cannot reference actors from

outside the level instance without
EditorPaths

• Try to organise world content
vertically

Level Instances
• Provide Unreal with its own version of a “prefab”
• Essentially functions as a sub-level
• Changes are propagated across

all instances
• Editing can be done in-situ
• Unpacked at at PIE/Cook time

Actor01 Actor02

MapInstanced
Level

MapPersistent
Level

• Data layers can be assigned to level
instances but will be inherited
by all owned actors

• Instances can be nested
• Cannot reference actors from

outside the level instance without
EditorPaths

• Try to organise world content
vertically

Packed Level Actors
• Discards all components that are not static meshes
• Automatically generates instanced static meshes
• Generates two files
• Avoid editing in the BP
• Be careful moving files around
• Bounds affect streaming

Actor01 Actor02

MapInstanced
Level

MapPersistent
Level

• These are great for large groups
of smaller geometry pieces that
may be repeated

• Try use instead of level instances
whenever possible

Packed Level Actors
• Discards all components that are not static meshes
• Automatically generates instanced static meshes
• Generates two files
• Avoid editing in the BP
• Be careful moving files around
• Bounds affect streaming

Actor01 Actor02

MapInstanced
Level

MapPersistent
Level

Packed
Blueprint Blueprint

• These are great for large groups
of smaller geometry pieces that
may be repeated

• Try use instead of level instances
whenever possible

Packed Level Actors
• Discards all components that are not static meshes
• Automatically generates instanced static meshes
• Generates two files
• Avoid editing in the BP
• Be careful moving files around
• Bounds affect streaming

Actor01 Actor02

MapInstanced
Level

MapPersistent
Level

Packed
Blueprint Blueprint

• These are great for large groups
of smaller geometry pieces that
may be repeated

• Try use instead of level instances
whenever possible

Packed Level Actors
• Discards all components that are not static meshes
• Automatically generates instanced static meshes
• Generates two files
• Avoid editing in the BP
• Be careful moving files around
• Bounds affect streaming

Actor01 Actor02

MapInstanced
Level

MapPersistent
Level

Packed
Blueprint Blueprint

• These are great for large groups
of smaller geometry pieces that
may be repeated

• Try use instead of level instances
whenever possible

Runtime Cell Transformers

• Load and apply arbitrary
transformations for actors on a
cell-by-cell basis

• Only occurs during streaming
generation, not saved

• While for build this is done for
all cells on all grids at cook
time, it is done on-the-fly
during PIE sessions as grid
cells stream in “Runtime Cell Transformers are non-destructive stackable data

transformation processes that are applied during the streaming
generation phase when cooking and launching into PIE.” - Epic’s

World Building Guide

World Partition Builders
• Arbitrary jobs that can be run incrementally

across a World Partition level by cell
• Epic provides a number of these exposed by

default under the “Build” menu
• Allows for definition and registration of

custom builder commandlets

World Partition Builders
• Arbitrary jobs that can be run incrementally

across a World Partition level by cell
• Epic provides a number of these exposed by

default under the “Build” menu
• Allows for definition and registration of

custom builder commandlets

Smart Objects
• Provide tools for agents to interact with

“slots” via a reservation system

• Actors with USmartObjectComponents can
be configured with definitions that can hold
arbitrary data, or even take control interacting
agent behaviour on each slot

• When searching via the subsystem, a limited
subset of slot data for currently unloaded
Smart Objects can still be retrieved

• Slots held in spatially-partitioned container:
• Spatial Hash Grid
• Octree

Streaming Systems
For Game State Management

A Typical Open World
• Non-linear progression
• Main quest-line with lasting world effects
• Side quests with player ability to drop-in/drop-out
• Interactive map with point of interest markers
• Party system for companion NPCs
• Scheduled world changes
• Time-of-day mechanics

Evaluating Gameplay Requirements
• Assess which systems of World Partition can be leveraged to build out

gameplay features with respect to the needs of your game
• Keep in mind possible dependencies and combinatorics involved with both

runtime management and markup

Potential Data Layer Feature Compatibility Matrix

Common Scheduling Quests Locality Interiors Quality Lighting

Common — — — — — —
Scheduling ✔ ✘ ✘ ✘ ✔

Quests ✘ ✘ ✘ ✔
Locality ✔ ✘ ✔
Interiors ✘ ✔
Quality ✔
Lighting

Actor04 Actor01

Actor02

Actor03

 Data
Layers

Grid
s

Cells

Evaluating Gameplay Requirements
• Assess which systems of World Partition can be leveraged to build out

gameplay features with respect to the needs of your game
• Keep in mind possible dependencies and combinatorics involved with both

runtime management and markup

Potential Data Layer Feature Compatibility Matrix

Common Scheduling Quests Locality Interiors Quality Lighting

Common — — — — — —
Scheduling ✔ ✘ ✘ ✘ ✔

Quests ✘ ✘ ✘ ✔
Locality ✔ ✘ ✔
Interiors ✘ ✔
Quality ✔
Lighting

Actor04 Actor01

Actor02

Actor03

 Data
Layers

Grid
s

Cells

HLODs

Grids As Interiors, Exteriors, & Performance Settings
• Grids used for handling interior/exterior streaming

• UWorldPartitionMultiStreamingSourceComponent was
added to support multiple source shapes across presets

• Many interior grids is ok
for level streaming

• Fully unloading exterior is
not recommended unless
applied to large interiors

Data Layers As Schedules, Quests, & World States
• OR behaviour makes these concepts reasonably compatible
• Data Layers make for a powerful tool in manipulating scheduling

• FDataLayerGroup provides hierarchical specification of inherited groups
• Multiple schedule groups can be enabled simultaneously

World Partition Spawners
• The limitations of Data Layers can be supplemented by

AWorldPartitionSpawner, to finely control spawn and config
• Data Layers used to mask higher order requirements

• Manage detaching and reattaching for ownership changes
• Can also be configured via temporary editor actor with hooks

to serialise to proxy archive, stored as binary

World Partition Spawners
• The limitations of Data Layers can be supplemented by

AWorldPartitionSpawner, to finely control spawn and config
• Data Layers used to mask higher order requirements

• Manage detaching and reattaching for ownership changes
• Can also be configured via temporary editor actor with hooks

to serialise to proxy archive, stored as binary

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

Active Schedule Policy: StandardActive Schedule Policy: Solo

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

SideQuest01

Active Schedule Policy: StandardActive Schedule Policy: Solo

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

SideQuest01

SideQuest02

Active Schedule Policy: StandardActive Schedule Policy: Solo

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

SideQuest01

SideQuest02

SideQuest03

Active Schedule Policy: StandardActive Schedule Policy: Solo

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

SideQuest01

SideQuest02

Active Schedule Policy: StandardActive Schedule Policy: Solo

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

MondayAfternoon

SideQuest01

SideQuest02

Active Schedule Policy: StandardActive Schedule Policy: Solo

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

MondayAfternoon

SideQuest01

SideQuest02

Active Schedule Policy: StandardActive Schedule Policy: Solo

WorldState01Persistent

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

MondayAfternoonMainQuest01

SideQuest01

SideQuest02

Active Schedule Policy: StandardActive Schedule Policy: Solo

WorldState01Persistent

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

MondayAfternoonMainQuest01

SideQuest01

SideQuest02

Active Schedule Policy: StandardActive Schedule Policy: Solo

MainQuest01_Stage01

WorldState01Persistent

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

MondayAfternoonMainQuest01

SideQuest01

SideQuest02

Active Schedule Policy: StandardActive Schedule Policy: Solo

MainQuest01_Stage01

MainQuest01_Stage02

WorldState01Persistent

Open & Closed Schedules
• Use “open” and “closed” schedules for controlling additive world

state with managed preloading

• Schedule can be modified with activation policies of:
• Standard: Replace the current active schedule, keep additives
• Additive: Add the schedule into the current additive overlay
• Solo: Replace the current active schedule, ignore additives

• Temporary additives can be overlayed during solos for finer
controls - will be discarded on policy change

• Persistent schedules allow world state to affect all policies

• Can be linked to the lighting and environment systems to force
certain properties such as time-of-day and weather conditions

Current Active Schedule

MondayMorning

Current Additive Schedules

Temporary Additive Schedules

MondayAfternoon

SideQuest01

SideQuest02

Active Schedule Policy: StandardActive Schedule Policy: Solo

WorldState01

Custom Markup & Tooling Workflows
• Runtime Streaming Grid Actor Colouration

• Character Appointment Spawners

• Lighting previews alongside schedule in-editor

• Schedule preview & management controls

Custom Markup & Tooling Workflows
• Runtime Streaming Grid Actor Colouration

• Character Appointment Spawners

• Lighting previews alongside schedule in-editor

• Schedule preview & management controls

Level Streaming Watch
• The ULevelStreamingWatch object allows owners to easily bind to and query

world streaming state for either the whole world or just for a specific source
• Helps handle slow streaming and provides feedback for dependent features

• Used across several systems to manage streaming-aware functionality:
• World startup and configuration
• Teleportation warm-up and execution
• Interior/exterior transitions
• Managing airlocks between scripted level segments

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Actor09
Actor06

Actor07

Actor08

Actor10

DL01
DL01

DL01
DL01

DL01

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Actor09
Actor06

Actor07

Actor08

Actor10

DL01
DL01

DL01
DL01

DL01

Marker Cache

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Actor09
Actor06

Actor07

Actor08

Actor10

DL01
DL01

DL01
DL01

DL01

Marker Cache

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info
• Pull runtime grid info on marker data
• Create virtual mapping of spaces
• Add marker “portals” as delegates

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info
• Pull runtime grid info on marker data
• Create virtual mapping of spaces
• Add marker “portals” as delegates

Marker01

Grid02

Marker02

Grid03

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info
• Pull runtime grid info on marker data
• Create virtual mapping of spaces
• Add marker “portals” as delegates

Marker01

Grid02

Marker02

Grid03

Grid01

Grid02Grid03

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info
• Pull runtime grid info on marker data
• Create virtual mapping of spaces
• Add marker “portals” as delegates

Marker01

Grid02

Marker02

Grid03
Grid01
Grid02

Grid01
Grid03

Grid01

Grid02Grid03

A Marker System
• Keep all marker actors persistently loaded

• Easy to understand, incredibly wasteful

• Cache markers on world startup with Data Layers
• Easy in PIE, painful and fiddly to manage

• Cache markers on cook for offline lookup, track live
• Painful for iteration with PIE, consistent results

Actor04
Actor01

Actor02

Actor03

Actor05

Marker
Marker

Marker
Marker

Marker

Marker Cache

• Interior/exterior handling leverage grid info
• Pull runtime grid info on marker data
• Create virtual mapping of spaces
• Add marker “portals” as delegates

Marker01

Grid02

Marker02

Grid03
Grid01
Grid02

Grid01
Grid03

Grid01

Grid02Grid03

Serialisation Systems
For Game State Persistence

Condensing World & Streaming State Representation
• Author systems to operate on discreet states

• Design actors to support reload scenarios

• Reduce states into tractable, configurable IDs
• Avoid tying state data directly to assets

• Some state will be specific to actors in the world
• Tag to save space and facilitate reset capabilities

• Allow save game data to be manually modified
• Optional text-based serialisation can be useful

for debugging and desk-checking game states
• This functionality can work very well as a debug

tool when allowing for state capture

Capturing Live State & Save Game Concerns
• Actors configure themselves on inference from world state

• Avoids abusing Data Layers for minor details

• Taking in game state as a snapshot at any point is a relatively
safe path assuming all critical triggers and state are serialised

• Ensure save points and state change process is clear and
controlled

• Ensure live capture cannot generate invalid game state
• Reduce valid states where possible

• Managing world state conflicts is hard to do in an automated
way, so good documentation on the effects of all quests over
time is valuable

Intermediate State Caching
• Actors being streamed in and out need a way to restore critical state

• It may also be important, depending on your game to be able to modify object states while unloaded

• The USerialisableActorStateComponent provides a simplified way defining these states
• Leverages SerializeScriptProperties with SaveGame - can be serialised out to an archive or variant

• Actors should be written to configure on changes coming from cache
• Unloaded lookup can be done based on the actor’s SoftObjectPointer
• Special handling is needed for WorldPartitionSpawners
• Can be handled in batch

Serialisable Actor Cache

Actor02
Serialisable

Actor01
Serialisable

Level Streaming Persistence Plugin
• Yup, Epic has a plugin for that…

• “Level Streaming Persistence” plugin is still experimental as of
Unreal 5.6

• All persistent actor properties must be marked up in a config file
with their full path

• Can be brittle to path changes and renames
• Does not handle replacement of actor destroyed state

• Provides ability to remotely modify properties marked “public”

Wrap-up, Summary
And Q&A

Summing it all up

• World Partition is a very deep bag of tools enabling parallel
workflow, level streaming, and actor/geometry optimisation

• Be aware of the tooling and dimensionality you have available,
and intentionally plan out its usage ahead of time

• Managing open world state can become quite complex - it’s
valuable to build in assumptions, and limit possibility space

• Approach all systems and features with a plan for persistence
early and evaluate impact of streaming on all functionality

Q&A

@jonjondev.comjonjondevjonjondev.com

Thanks for watching!
Slides

Available
Here

For
Download

JonJonDev.com/documents/GCAP25StreamingAndSerialisation.pdf

http://JonJonDev.com/documents/GCAP25StreamingAndSerialisation.pdf

